用户名: 密码:
会员中心 在线投稿
| 网站首页 | 中国历史 | 世界历史 | 历史名人 | 教案试题 | 历史故事 | 考古发现 | 历史图片 | 文化 | 社会
相关文章    
您现在的位置: 历史千年 >> 文化 >> 文化研究 >> 正文
生态建筑的来龙去脉
现代生态建筑与风水的联…
生态建筑的风水
生态建筑理论与风水不谋…
写字楼的风水概念探讨
活着的原生态——白沙村…
非物质文化遗产的概念化…
土家族梯玛文化的内涵及…
生态环保工作情况汇报范…
论中国古典诗歌研究的文…
最新热门    
 
生态概念的内涵及思想源流

时间:2009-8-8 16:49:33  来源:不详
p; 能量转化、物质循环和信息传递是任何一个自然生态系统的最基本的功能,每一个生态系统都是由能流、物流和信息流构成的功能单元。

    (1)能量转化。维持生态系统进化的全部能量均来自太阳辐射能。能量转化主要指绿色植物通过光合作用把太阳能转化为生物能(化学潜能),再沿食物链而逐级传递。

    煤和石油等化石能源等都是太阳能的转化形态。能量转化是单向、不可逆的。如果一个生态系统没有新的能量输入,那么当该系统所积累的有机物全部降解为无机物后,系统生命也就完结了。

    据研究进入大气层的太阳能是8.026焦/(厘米2·分钟),其中约30%被反射回去,20%被大气吸收,只有46%到达地面。这其中又只有10%左右辐射到绿色植物上,在10%的光能中,一般有0.2%~O.5%被绿色植物利用。地球的植物净初级生产力每年为1500亿~2000亿吨,其中一部分被消费者利用。

    在地球上,不同生态系统转化太阳能的数量是不同的。海洋中的植物光合作用每年产生的能量为23.87×10 8千焦/千米2;陆地上植物光合作用每年储存的能量约为427.6×10 8千焦/千米2。其中,又以森林储存的能量最多,约为97.4×10 8千焦/千米2;沙漠最少,约为1.96×10 8千焦/千米2。农作物储存的能量,由于其变化幅度很大,估计其能量的数值较困难,但其净初级生产力的干物质重量平均每年约为9.1×10 吨/千米2。人类处于食物链的顶端,从获取食物能量的角度看,要想每个人都有更充足的食物能,必须①使食物类别多样化;②控制人口数量;③扩大生产规模。从食物来源看,人类必须选择多种植物和动物为衣食之源,必须既食用植物又食用动物,还要食用微生物。

    (2)物质循环。

    ①水循环。地球上的水共约15亿千米3,其中海洋占97%左右,并在水的蒸腾过程中起着主要作用。森林对于陆地水的调节能力是惊人的。降水被林地截留14%~40%,其中5%~1O%被林下枯枝败叶吸收,还有50%~80%缓缓渗入地下成为地下水,其余的形成地表径流,沿地表而流动、汇聚,形成河流和湖泊。据估算,5万公顷森林的蓄水量就相当于一座百万立方米的水库,每平方千米森林平均可以储存5万~20万吨水。除了地球的大气环流决定全球水循环以外,还有水的大循环和小循环两条途径。森林使水分在生态系统中成为动态均衡循环的再生资源,构成“降水→树冠截留→地下水→林木蒸腾→返回大气”的水资源小循环;水的大循环是“大气降水→地下水→地表径流→河流→海洋→蒸发→返回大气”。当然,其他绿色植被在水循环中也具有一定的作用。

    ②气态循环。气态循环的核心是大气中的二氧化碳和氮气中的碳素和氮素的循环。

    碳循环  碳存在于生物有机体和无机环境中,是构成生物有机体的主要元素。在无机环境中,碳以二氧化碳和碳酸盐形式存在。在大气中二氧化碳约为7 000亿吨,在地球表层,碳储藏量约为2.0×1O 9亿吨。大气中的二氧化碳,每年有200亿~300亿吨被陆地上的绿色植物通过光合作用固定在生物有机体中,还有1000亿吨溶人海洋。海洋中溶解的二氧化碳既可被释放到大气,又可形成碳酸钙沉积在海底,使一部分碳元素在较长时间贮藏在地壳中。火山爆发时,又可把地壳中的一部分二氧化碳带回大气。因此,碳循环主要从二氧化碳到生物质,然后又回到二氧化碳。其中一小部分在地质年代中形成煤、石油、天然气等化石燃料贮藏在地层中。

    氮循环  氮是构成蛋白质的主要元素。大气中的氮进入生物有机体主要有四个途径:一是生物固氮(土壤中的固氮微生物和水中的蓝藻、绿藻等),大约每年固定54×1O6吨;二是大气固氮,闪电把大气中的氮气电离,形成硝酸盐后,经雨水淋洗带进土壤,每年约固氮7.6×10 6吨;三是岩浆固氮,大约每年为O.2×1O 6吨;四是工业固氮,把大气中的氮人工合成氨或铵盐,供植物吸收利用,大约每年为3O×10 6吨。总计为91.8×10 6吨。

    ③沉积型循环。这里以磷、硫元素为例说明沉积循环对生态平衡的作用。磷是有机体不可缺少的重要元素,没有磷参与生理和生物化学反应就没有生命。磷主要来自磷酸盐岩石、有机体的尸体和残渣而形成的有机磷酸盐。磷必须形成可溶性的磷酸盐才能进入循环。磷元素能溶于水却不能挥发,它是被降水从岩石圈溶解到水圈,形成可溶性磷酸盐,而被植物吸收。再经过一系列消费者的利用,将含磷的有机物、废物等有机化合物归还到土壤。再通过还原者的一系列分解作用,将其转换为可溶性磷酸盐供给生命有机体利用。生物所需要的磷的数量是比较大的,但是不溶性的磷酸盐一般是留在土壤表层,常常被水土侵蚀而流人大海。因此,很多地区土壤中磷的含量非常低,以至影响植物和动物的发育。

    硫在生物体内是少量的,却十分重要。没有硫元素参与就不可能形成蛋白质,是蛋白质造型不可缺少的原料。硫循环既是沉积型,也属于气体型。它包括长期的沉积相,即有机和无机态的硫通过风化而从沉积中释放出来,以盐溶液形式进入陆地和水体。硫进入大气有下列几条渠道:燃烧化石燃料、火山爆发、海面散发和分解过程释放等。硫进入大气的最初状态是硫化氢气体,但很快氧化成二氧化硫,并可溶于水,而后随降水到达地面变为弱硫酸。硫在溶解状态才能被植物吸收和利用,成为氨基酸的成分(如脱氨酸),再由生产者转到消费者。动、植物的尸体和动物排泄物被微生物分解后,硫元素又被送回土壤和水体,然后再被微生物分解,以硫化氢或硫酸盐形式而释放硫。无色硫细菌、绿色和紫色硫细菌,在一定条件下,能促进硫的循环,被动、植物利用。

    (3)信息传递。根据现有的研究成果,一般把生态信息分为营养信息、化学信息、物理信息、行为信息和环境信息。第一,营养信息。它是通过营养交换形式把营养信息从一个种群或个体传递到另一个种群或个体。食物链(网)是一个信息系统。例如,当鹌鹑数量较多时,猫头鹰大量捕食鹌鹑,鼠类很少被害;当鹌鹑较少时,猫头鹰转而捕食鼠类,通过猫头鹰捕食行为的变化,人类可以分别了解老鼠和鹌鹑种群数量的变化信息。由这些信息,人类可以获取生物种群的数量变化。第二,化学信息。生物在某些特定条件下或生长发育的某些阶段,分泌出某些化学物质,这些物质在生物种群之间起到媒介作用,通过其特殊气味或其他痕迹,作为生物“认路”或相互跟随的标记。例如,蜜蜂与花朵、蚂蚁与蚜虫就是靠化学信息发生关系的种群。第三,物理信息。动、植物可以通过声音、颜色、光泽等物理特征传递安全、恐吓、求偶等各种信息。第四,行为信息。这是指某些动物种类通过一定的形体姿态向同伴发出求偶、挑战等信息。第五,环境信息。这里所说的环境信息是指全球的或大区域的气象、地质、水文、星际以及其他环境要素的变动或相互之间的影响。如厄尔尼诺现象、地震、火山爆发、洪水泛滥、太阳耀斑等,这些现象发生之前的表象或征兆,总会被生物界所“察觉”。20世纪50年代以来,人类逐渐认识到,生物多样性的减退与这些环境变动有着密切的关系。及时收集、分析、提炼信息资源,乃至模拟这些信息系统,对于保持生物多样性和人类自身生存,实现全球可持续发展目标,有着不可估量的意义。

    (4)生态系统生产力。生态系统的生产力主要包括生物产品的现存量、生产量和周转率这三部分。现存量可以用单位面积的生物个体数量、重量或者能量表示。生产量是指在一定时间之内某个种群(或生物群落)所产生出的有机体的数量、生物量(干物质重量)和能量数量,所表达的是时间上的积累的概念。生产力高低代表着生态系统功能的强弱、结构的合理程度。

表1-3以人类的不同时期的农业生态系统的粮食产量为例,说明生产力指标的换算,以及三个不同农业生态系统水平下生产力的区别。显然,海藻培养是最有希望的,它可能使生态生产力得到极大的提高。海藻是人类潜在的新食物来源。所谓早期的采集农业,包括整个旧石器时代到人类栽培植物之前的漫长历史时期;不投放商业能量,指不投入电能、化肥、农药等附加能量和物质,这样的农业完全靠生态系统内部物质循环维持;反之,投入这些能量及其制成品的农业就叫做现代农业。

 

    初级生产量只有部分被消费者所利用转化为次级生产量。这是由于某些植物或植物的某一部分不可能被动物得到,或不可食用等原因。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >> 

 
  | 设为首页 | 加入收藏 | 联系我们 | 友情链接 | 版权申明 |  
Copyright 2006-2009 © www.lsqn.cn All rights reserved
历史千年 版权所有